Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Reprod Fertil ; 5(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38367345

RESUMO

Abstract: Poly- and per-fluoroalkyl substances (PFAS) are synthetic environmentally persistent chemicals. Despite the phaseout of specific PFAS, their inherent stability has resulted in ubiquitous and enduring environmental contamination. PFAS bioaccumulation has been reported globally with omnipresence in most populations wherein they have been associated with a range of negative health effects, including strong associations with increased instances of testicular cancer and reductions in overall semen quality. To elucidate the biological basis of such effects, we employed an acute in vitro exposure model in which the spermatozoa of adult male mice were exposed to a cocktail of PFAS chemicals at environmentally relevant concentrations. We hypothesized that direct PFAS treatment of spermatozoa would induce reactive oxygen species generation and compromise the functional profile and DNA integrity of exposed cells. Despite this, post-exposure functional testing revealed that short-term PFAS exposure (3 h) did not elicit a cytotoxic effect, nor did it overtly influence the functional profile, capacitation rate, or the in vitro fertilization ability of spermatozoa. PFAS treatment of spermatozoa did, however, result in a significant delay in the developmental progression of the day 4 pre-implantation embryos produced in vitro. This developmental delay could not be attributed to a loss of sperm DNA integrity, DNA damage, or elevated levels of intracellular reactive oxygen species. When considered together, the results presented here raise the intriguing prospect that spermatozoa exposed to a short-term PFAS exposure period potentially harbor an alternate stress signal that is delivered to the embryo upon fertilization. Lay summary: PFAS are synthetic chemicals widely used in non-stick cookware, food packaging, and firefighting foam. Such extensive use has led to concerning levels of environmental contamination and reports of associations with a spectrum of negative health outcomes, including testicular cancer and reduced semen quality. To investigate the effects of PFAS on male reproduction, we incubated mouse sperm in a cocktail of nine PFAS at environmentally relevant concentrations before checking for a range of functional outcomes. This treatment strategy was not toxic to the sperm; it did not kill them or reduce their motility, nor did it affect their fertilization capacity. However, we did observe developmental delays among pre-implantation embryos created using PFAS-treated sperm. Such findings raise the intriguing prospect that PFAS-exposed sperm harbor a form of stress signal that they deliver to the embryo upon fertilization.


Assuntos
Fluorocarbonos , Neoplasias Embrionárias de Células Germinativas , Doenças dos Roedores , Neoplasias Testiculares , Masculino , Camundongos , Animais , Neoplasias Testiculares/veterinária , Análise do Sêmen/veterinária , Espécies Reativas de Oxigênio/farmacologia , Sêmen , Espermatozoides/fisiologia , DNA/farmacologia , Fluorocarbonos/toxicidade
2.
Nat Rev Urol ; 19(12): 727-750, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36100661

RESUMO

Over the past decade, mounting evidence has shown an alarming association between male subfertility and poor somatic health, with substantial evidence supporting the increased incidence of oncological disease, cardiovascular disease, metabolic disorders and autoimmune diseases in men who have previously received a subfertility diagnosis. This paradigm is concerning, but might also provide a novel window for a crucial health reform in which the infertile phenotype could serve as an indication of potential pathological conditions. One of the major limiting factors in this association is the poor understanding of the molecular features that link infertility with comorbidities across the life course. Enzymes involved in the lipid oxidation process might provide novel clues to reconcile the mechanistic basis of infertility with incident pathological conditions. Building research capacity in this area is essential to enhance the early detection of disease states and provide crucial information about the disease risk of offspring conceived through assisted reproduction.


Assuntos
Reforma dos Serviços de Saúde , Infertilidade Masculina , Masculino , Humanos , Infertilidade Masculina/etiologia , Infertilidade Masculina/diagnóstico , Incidência , Lipídeos
3.
Data Brief ; 42: 108032, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35392627

RESUMO

This article reports the proteomic legacy of in vivo exposure to the xenobiotic, acrylamide, on the epithelial cell population of the proximal segments of the mouse epididymis. Specifically, adult male mice were administered acrylamide (25 mg/kg bw/day) or vehicle control for five consecutive days before dissection of the epididymis. Epididymal epithelial cells were isolated from the proximal (caput) epididymal segment and subjected to quantitative proteomic analysis using multiplexed tandem mass tag (TMT) labeling coupled to mass spectrometry. Here, we report the data generated by this strategy, including the identification of 4405 caput epididymal epithelial cell proteins, approximately 6.8% of which displayed altered expression in response to acrylamide challenge. Our interpretation and discussion of these data features in the article "Acrylamide modulates the mouse epididymal proteome to drive alterations in the sperm small non-coding RNA profile and dysregulate embryo development".

4.
Biol Reprod ; 106(3): 503-514, 2022 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-34673933

RESUMO

The dormant population of ovarian primordial follicles is determined at birth and serves as the reservoir for future female fertility. Yet our understanding of the molecular, biochemical, and cellular processes underpinning primordial follicle activation remains limited. The survival of primordial follicles relies on the correct complement and morphology of granulosa cells, which provide signaling factors essential for oocyte and follicular survival. To investigate the contribution of granulosa cells in the primordial-to-primary follicle transition, gene expression profiles of granulosa cells undergoing early differentiation were assessed in a murine model. Ovaries from C57Bl/6 mice were enzymatically dissociated at time-points spanning the initial wave of primordial follicle activation. Post-natal day (PND) 1 ovaries yielded primordial granulosa cells, and PND4 ovaries yielded a mixed population of primordial and primary granulosa cells. The comparative transcriptome of granulosa cells at these time-points was generated via Illumina NextSeq 500 system, which identified 131 significantly differentially expressed transcripts. The differential expression of eight of the transcripts was confirmed by RT-qPCR. Following biological network mapping via Ingenuity Pathway Analysis, the functional expression of the protein products of three of the differentially expressed genes, namely FRZB, POD1, and ZFX, was investigated with in-situ immunolocalization in PND4 mouse ovaries was investigated. Finally, evidence was provided that Wnt pathway antagonist, secreted frizzled-related protein 3 (FRZB), interacts with a suppressor of primordial follicle activation WNT3A and may be involved in promoting primordial follicle activation. This study highlights the dynamic changes in gene expression of granulosa cells during primordial follicle activation and provides evidence for a renewed focus into the Wnt signaling pathway's role in primordial follicle activation.


Assuntos
Folículo Ovariano , Transcriptoma , Animais , Animais Recém-Nascidos , Feminino , Células da Granulosa/metabolismo , Camundongos , Oócitos/fisiologia , Folículo Ovariano/metabolismo
5.
Hum Fertil (Camb) ; 25(4): 625-639, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33783305

RESUMO

The growth of smartphone application use across areas of female reproductive health has led to increased interest into their functions and benefits. This scoping review aims to determine the nature and extent of the peer-reviewed literature presented on fertility-based apps, to identify the reliability of the information within the apps, and to determine the ability of this information to educate users. A systematic search of six databases was conducted in April 2020, returning a total of 21,158 records. After duplicate removal, title and abstract screening exclusionary steps, 27 records were reviewed and charted. Records covered a variety of reproductive health themes including contraception, sexual health, and family planning, and used a range of methodologies. The accuracy of fertility information within the apps reported in these studies was variable, but overall there was a lack of depth in the coverage of content in apps. It was common for studies in this review to base fertile window algorithms on stringent cycle length and variability requirements, limiting the applicability of information delivered to users. Furthermore, studies from app affiliates often lacked collaborations with researchers, minimising the potential for fertility knowledge improvements integrated across the suite of female reproductive health apps.


Assuntos
Aplicativos Móveis , Feminino , Humanos , Smartphone , Reprodutibilidade dos Testes , Fertilidade , Coleta de Dados
6.
BMC Genomics ; 22(1): 728, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625024

RESUMO

BACKGROUND: The seminal vesicles synthesise bioactive factors that support gamete function, modulate the female reproductive tract to promote implantation, and influence developmental programming of offspring phenotype. Despite the significance of the seminal vesicles in reproduction, their biology remains poorly defined. Here, to advance understanding of seminal vesicle biology, we analyse the mouse seminal vesicle transcriptome under normal physiological conditions and in response to acute exposure to the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or vehicle control daily for five consecutive days prior to collecting seminal vesicle tissue 72 h following the final injection. RESULTS: A total of 15,304 genes were identified in the seminal vesicles with those encoding secreted proteins amongst the most abundant. In addition to reproductive hormone pathways, functional annotation of the seminal vesicle transcriptome identified cell proliferation, protein synthesis, and cellular death and survival pathways as prominent biological processes. Administration of acrylamide elicited 70 differentially regulated (fold-change ≥1.5 or ≤ 0.67) genes, several of which were orthogonally validated using quantitative PCR. Pathways that initiate gene and protein synthesis to promote cellular survival were prominent amongst the dysregulated pathways. Inflammation was also a key transcriptomic response to acrylamide, with the cytokine, Colony stimulating factor 2 (Csf2) identified as a top-ranked upstream driver and inflammatory mediator associated with recovery of homeostasis. Early growth response (Egr1), C-C motif chemokine ligand 8 (Ccl8), and Collagen, type V, alpha 1 (Col5a1) were also identified amongst the dysregulated genes. Additionally, acrylamide treatment led to subtle changes in the expression of genes that encode proteins secreted by the seminal vesicle, including the complement regulator, Complement factor b (Cfb). CONCLUSIONS: These data add to emerging evidence demonstrating that the seminal vesicles, like other male reproductive tract tissues, are sensitive to environmental insults, and respond in a manner with potential to exert impact on fetal development and later offspring health.


Assuntos
Glândulas Seminais , Transcriptoma , Acrilamida/toxicidade , Animais , Citocinas , Feminino , Masculino , Camundongos , Reprodução/genética
7.
Cell Rep ; 37(1): 109787, 2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34610313

RESUMO

Paternal exposure to environmental stressors elicits distinct changes to the sperm sncRNA profile, modifications that have significant post-fertilization consequences. Despite this knowledge, there remains limited mechanistic understanding of how paternal exposures modify the sperm sncRNA landscape. Here, we report the acute sensitivity of the sperm sncRNA profile to the reproductive toxicant acrylamide. Furthermore, we trace the differential accumulation of acrylamide-responsive sncRNAs to coincide with sperm transit of the proximal (caput) segment of the epididymis, wherein acrylamide exposure alters the abundance of several transcription factors implicated in the expression of acrylamide-sensitive sncRNAs. We also identify extracellular vesicles secreted from the caput epithelium in relaying altered sncRNA profiles to maturing spermatozoa and dysregulated gene expression during early embryonic development following fertilization by acrylamide-exposed spermatozoa. These data provide mechanistic links to account for how environmental insults can alter the sperm epigenome and compromise the transcriptomic profile of early embryos.


Assuntos
Acrilamida/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Epididimo/metabolismo , Proteoma/efeitos dos fármacos , Pequeno RNA não Traduzido/metabolismo , Espermatozoides/efeitos dos fármacos , Animais , Embrião de Mamíferos/citologia , Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Epididimo/citologia , Vesículas Extracelulares/metabolismo , Feminino , Masculino , Camundongos , MicroRNAs/metabolismo , Proteoma/metabolismo , RNA de Transferência/metabolismo , Espermatozoides/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Front Cell Dev Biol ; 9: 691826, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34268312

RESUMO

Accompanying the precipitous age-related decline in human female fertility is an increase in the proportion of poor-quality oocytes within the ovary. The macroautophagy pathway, an essential protein degradation mechanism responsible for maintaining cell health, has not yet been thoroughly investigated in this phenomenon. The aim of this study was to characterize the macroautophagy pathway in an established mouse model of oocyte aging using in-depth image analysis-based methods and to determine mechanisms that account for the observed changes. Three autophagy pathway markers were selected for assessment of gene and protein expression in this model: Beclin 1; an initiator of autophagosome formation, Microtubule-associated protein 1 light chain 3B; a constituent of the autophagosome membrane, and lysosomal-associated membrane protein 1; a constituent of the lysosome membrane. Through quantitative image analysis of immunolabeled oocytes, this study revealed impairment of the macroautophagy pathway in the aged oocyte with an attenuation of both autophagosome and lysosome number. Additionally, an accumulation of amphisomes greater than 10 µm2 in area were observed in aging oocytes, and this accumulation was mimicked in oocytes treated with lysosomal inhibitor chloroquine. Overall, these findings implicate lysosomal dysfunction as a prominent mechanism by which these age-related changes may occur and highlight the importance of macroautophagy in maintaining mouse pre-ovulatory oocyte quality. This provides a basis for further investigation of dysfunctional autophagy in poor oocyte quality and for the development of therapeutic or preventative strategies to aid in the maintenance of pre-ovulatory oocyte health.

9.
Mol Cell Proteomics ; 20: 100107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34089863

RESUMO

Seminal vesicles are an integral part of the male reproductive accessory gland system. They produce a complex array of secretions containing bioactive constituents that support gamete function and promote reproductive success, with emerging evidence suggesting these secretions are influenced by our environment. Despite their significance, the biology of seminal vesicles remains poorly defined. Here, we complete the first proteomic assessment of mouse seminal vesicles and assess the impact of the reproductive toxicant acrylamide. Mice were administered acrylamide (25 mg/kg bw/day) or control daily for five consecutive days prior to collecting seminal vesicle tissue. A total of 5013 proteins were identified in the seminal vesicle proteome with bioinformatic analyses identifying cell proliferation, protein synthesis, cellular death, and survival pathways as prominent biological processes. Secreted proteins were among the most abundant, and several proteins are linked with seminal vesicle phenotypes. Analysis of the effect of acrylamide on the seminal vesicle proteome revealed 311 differentially regulated (FC ± 1.5, p ≤ 0.05, 205 up-regulated, 106 downregulated) proteins, orthogonally validated via immunoblotting and immunohistochemistry. Pathways that initiate protein synthesis to promote cellular survival were prominent among the dysregulated pathways, and rapamycin-insensitive companion of mTOR (RICTOR, p = 6.69E-07) was a top-ranked upstream driver. Oxidative stress was implicated as contributing to protein changes, with acrylamide causing an increase in 8-OHdG in seminal vesicle epithelial cells (fivefold increase, p = 0.016) and the surrounding smooth muscle layer (twofold increase, p = 0.043). Additionally, acrylamide treatment caused a reduction in seminal vesicle secretion weight (36% reduction, p = 0.009) and total protein content (25% reduction, p = 0.017). Together these findings support the interpretation that toxicant exposure influences male accessory gland physiology and highlights the need to consider the response of all male reproductive tract tissues when interpreting the impact of environmental stressors on male reproductive function.


Assuntos
Acrilamida/toxicidade , Poluentes Ambientais/toxicidade , Glândulas Seminais/efeitos dos fármacos , Animais , Exposição Ambiental , Masculino , Camundongos , Proteoma/efeitos dos fármacos , Proteômica , Glândulas Seminais/metabolismo
10.
Proteomics ; 21(13-14): e2000079, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33792189

RESUMO

Spermatozoa transition to functional maturity as they are conveyed through the epididymis, a highly specialized region of the male excurrent duct system. Owing to their transcriptionally and translationally inert state, this transformation into fertilization competent cells is driven by complex mechanisms of intercellular communication with the secretory epithelium that delineates the epididymal tubule. Chief among these mechanisms are the release of extracellular vesicles (EV), which have been implicated in the exchange of varied macromolecular cargo with spermatozoa. Here, we describe the optimization of a tractable cell culture model to study the mechanistic basis of sperm-extracellular vesicle interactions. In tandem with receptor inhibition strategies, our data demonstrate the importance of milk fat globule-EGF factor 8 (MFGE8) protein in mediating the efficient exchange of macromolecular EV cargo with mouse spermatozoa; with the MFGE8 integrin-binding Arg-Gly-Asp (RGD) tripeptide motif identified as being of particular importance. Specifically, complementary strategies involving MFGE8 RGD domain ablation, competitive RGD-peptide inhibition and antibody-masking of alpha V integrin receptors, all significantly inhibited the uptake and redistribution of EV-delivered proteins into immature mouse spermatozoa. These collective data implicate the MFGE8 ligand and its cognate integrin receptor in the mediation of the EV interactions that underpin sperm maturation.


Assuntos
Fator de Crescimento Epidérmico , Vesículas Extracelulares , Animais , Antígenos de Superfície , Epididimo , Fator VIII , Glicolipídeos , Glicoproteínas , Gotículas Lipídicas , Masculino , Camundongos , Proteínas do Leite , Espermatozoides
11.
Reprod Fertil Dev ; 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33743842

RESUMO

Information on the morphology and histology of the male reproductive system of the Crocodylia species is necessary to determine the role of these tissues in the production of functional spermatozoa. Accordingly, in this study we examined the gross morphology and microanatomy of the testis and the male excurrent duct system through which spermatozoa pass before ejaculation. The data demonstrate that the reproductive system in male saltwater crocodiles comprises paired testes, which convey spermatozoa distally via the rete testis into an excurrent duct system comprising ductuli efferentes, ductuli epididymides, ductus epididymidis and ductus deferens. The epithelium delineating the male tract was dominated by non-ciliated and ciliated cells structured into a simple columnar lining of the ductuli efferentes and ductuli epididymides, through to the high pseudostratified columnar epithelium of the ductus epididymidis and ductus deferens. The morphology and histochemical staining of these ducts suggest their involvement in seminal fluid production and/or its modification, which likely contributes to the nourishment, protection and/or storage of crocodile spermatozoa. As a reflection of their common Archosaurs ancestry, the overall structural characteristics we describe for the crocodile male excurrent duct system share closer similarities to those of the Aves than other clades within the Reptilia class or Mammalia.

12.
Front Endocrinol (Lausanne) ; 12: 799043, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35356147

RESUMO

Per-fluoroalkyl and polyfluoroalkyl substances (PFAS) are a diverse group of synthetic fluorinated chemicals used widely in industry and consumer products. Due to their extensive use and chemical stability, PFAS are ubiquitous environmental contaminants and as such, form an emerging risk factor for male reproductive health. The long half-lives of PFAS is of particular concern as the propensity to accumulate in biological systems prolong the time taken for excretion, taking years in many cases. Accordingly, there is mounting evidence supporting a negative association between PFAS exposure and an array of human health conditions. However, inconsistencies among epidemiological and experimental findings have hindered the ability to definitively link negative reproductive outcomes to specific PFAS exposure. This situation highlights the requirement for further investigation and the identification of reliable biological models that can inform health risks, allowing sensitive assessment of the spectrum of effects of PFAS exposure on humans. Here, we review the literature on the biological effects of PFAS exposure, with a specific focus on male reproduction, owing to its utility as a sentinel marker of general health. Indeed, male infertility has increasingly been shown to serve as an early indicator of a range of co-morbidities such as coronary, inflammatory, and metabolic diseases. It follows that adverse associations have been established between PFAS exposure and the incidence of testicular dysfunction, including pathologies such as testicular cancer and a reduction in semen quality. We also give consideration to the mechanisms that render the male reproductive tract vulnerable to PFAS mediated damage, and discuss novel remediation strategies to mitigate the negative impact of PFAS contamination and/or to ameliorate the PFAS load of exposed individuals.


Assuntos
Fluorocarbonos , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Fluorocarbonos/toxicidade , Humanos , Masculino , Reprodução , Análise do Sêmen
13.
BMC Womens Health ; 20(1): 45, 2020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32131809

RESUMO

BACKGROUND: Previous studies have identified that women living in developed countries have insufficient knowledge of factors which may be contributing to the increasingly high global infertility rates such as maternal age and assisted reproductive technologies. There is a large market of reproductive health smartphone applications, yet little is known about the advantages these apps may confer to users in regards to reproductive health knowledge. METHODS: An anonymous, online survey of women living in Australia aged 18 and above was open March-June 2018, until ≥200 responses were acquired for statistical power. Respondents answered questions regarding knowledge about general fertility and related factors (age, cyclic fertility, smoking, obesity, miscarriage rate, and success of assisted reproductive technologies). Fertility knowledge was compared in respondents who did or did not use apps relating to female reproductive health. Additionally the functions preferred in reproductive health apps was described by app using respondents. Sociodemographic information was also collected, and relevant data within the dataset was subject to multivariable modelling for the outcome of the fertility knowledge questions. RESULTS: Of the 673 respondents that completed the survey, 43.09% reported using mobile phone applications relating to female reproductive health. On average, respondents answered only three of the six fertility knowledge questions correctly. App using respondents were more likely to score better on one question, related to fertility during the menstrual cycle (p < 0.001). App users most commonly reported using the menstrual tracking function in apps (82.4%), which may account for the increased knowledge of cyclic fertility. CONCLUSIONS: This data provides preliminary evidence toward the usefulness of smartphone applications as a medium for providing information about fertility to women. A limited understanding of one's own fertility was demonstrated despite being essential for the decision-making of women throughout their reproductive years.


Assuntos
Fertilidade , Conhecimentos, Atitudes e Prática em Saúde , Aplicativos Móveis , Saúde Reprodutiva , Smartphone , Adolescente , Adulto , Austrália , Feminino , Humanos , Infertilidade Feminina , Adulto Jovem
14.
Antioxid Redox Signal ; 32(8): 550-568, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-31892284

RESUMO

Significance: The precipitous age-related decline in female fertility is intimately associated with a reduction in both the quantity and quality of the germline (oocytes). Although complex etiologies undoubtedly contribute to the deterioration of oocyte quality, increasing attention has focused on the pervasive impact of oxidative stress. Indeed, the prolonged lifespan of the meiotically arrested oocyte places this cell at heightened risk of oxidative lesions, which commonly manifest in dysregulation of protein homeostasis (proteostasis). Although oocytes are able to mitigate this threat via the mobilization of a sophisticated network of surveillance, repair, and proteolytic pathways, these defenses are themselves prone to age-related defects, reducing their capacity to eliminate oxidatively damaged proteins. Recent Advances: Here, we give consideration to the quality control mechanisms identified within the ovary that afford protection to the female germline. Our primary focus is to review recent advances in our understanding of the autophagy pathway and its contribution to promoting oocyte longevity and modulating pathophysiological responses to oxidative stress. In addition, we explore the therapeutic potential of emerging strategies to fortify autophagic activity. Critical Issues: The complex interplay of oxidative stress and autophagy has yet to be fully elucidated within the context of the aging oocyte and surrounding ovarian environment. Future Directions: Emerging evidence provides a strong impetus to resolve the causal link between autophagy and oxidative stress-driven pathologies in the aging oocyte. Such research may ultimately inform novel therapeutic strategies to combat the age-related loss of female fertility via fortification of intrinsic autophagic activity.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Fertilidade/fisiologia , Estresse Oxidativo/fisiologia , Animais , Feminino , Humanos , Oócitos/fisiologia , Proteostase/fisiologia
15.
Reproduction ; 159(1): R15-R29, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31376814

RESUMO

In women, the non-growing population of follicles that comprise the ovarian reserve is determined at birth and serves as the reservoir for future fertility. This reserve of dormant, primordial follicles and the mechanisms controlling their selective activation which constitute the committing step into folliculogenesis are essential for determining fertility outcomes in women. Much of the available data on the mechanisms responsible for primordial follicle activation focuses on a selection of key molecular pathways, studied primarily in animal models, with findings often not synonymous in humans. The excessive induction of primordial follicle activation may cause the development of premature ovarian insufficiency (POI), a condition characterised by menopause before age 40 years. POI affects 1-2% of all women and is accompanied by additional health risks. Therefore, it is critical to further our understanding of primordial follicle activation in order to diagnose, treat and prevent premature infertility. Research in primordial follicle activation has focused on connecting new molecules to already established key signalling pathways, such as phosphatidylinositol 3-Kinase (PI3K) and mammalian target of rapamycin (mTOR). Additionally, other aspects of the ovarian environment, such as the function of the extracellular matrix, in contributing to primordial follicle activation have gained traction. Clinical applications are examining replication of this extracellular environment through the construction of biological matrices mimicking the 3D ovary, to support follicular growth through to ovulation. This review outlines the importance of the events leading to the establishment of the ovarian reserve and highlights the fundamental factors known to influence primordial follicle activation in humans presenting new horizons for female infertility treatment.


Assuntos
Infertilidade Feminina/prevenção & controle , Oócitos/fisiologia , Folículo Ovariano/fisiologia , Insuficiência Ovariana Primária/terapia , Feminino , Preservação da Fertilidade , Humanos , Oócitos/citologia , Folículo Ovariano/citologia
16.
Hum Reprod Update ; 25(5): 518-540, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31374565

RESUMO

BACKGROUND: A defining feature of sexual reproduction is the transmission of genomic information from both parents to the offspring. There is now compelling evidence that the inheritance of such genetic information is accompanied by additional epigenetic marks, or stable heritable information that is not accounted for by variations in DNA sequence. The reversible nature of epigenetic marks coupled with multiple rounds of epigenetic reprogramming that erase the majority of existing patterns have made the investigation of this phenomenon challenging. However, continual advances in molecular methods are allowing closer examination of the dynamic alterations to histone composition and DNA methylation patterns that accompany development and, in particular, how these modifications can occur in an individual's germline and be transmitted to the following generation. While the underlying mechanisms that permit this form of transgenerational inheritance remain unclear, it is increasingly apparent that a combination of genetic and epigenetic modifications plays major roles in determining the phenotypes of individuals and their offspring. OBJECTIVE AND RATIONALE: Information pertaining to transgenerational inheritance was systematically reviewed focusing primarily on mammalian cells to the exclusion of inheritance in plants, due to inherent differences in the means by which information is transmitted between generations. The effects of environmental factors and biological processes on both epigenetic and genetic information were reviewed to determine their contribution to modulating inheritable phenotypes. SEARCH METHODS: Articles indexed in PubMed were searched using keywords related to transgenerational inheritance, epigenetic modifications, paternal and maternal inheritable traits and environmental and biological factors influencing transgenerational modifications. We sought to clarify the role of epigenetic reprogramming events during the life cycle of mammals and provide a comprehensive review of how the genomic and epigenomic make-up of progenitors may determine the phenotype of its descendants. OUTCOMES: We found strong evidence supporting the role of DNA methylation patterns, histone modifications and even non-protein-coding RNA in altering the epigenetic composition of individuals and producing stable epigenetic effects that were transmitted from parents to offspring, in both humans and rodent species. Multiple genomic domains and several histone modification sites were found to resist demethylation and endure genome-wide reprogramming events. Epigenetic modifications integrated into the genome of individuals were shown to modulate gene expression and activity at enhancer and promoter domains, while genetic mutations were shown to alter sequence availability for methylation and histone binding. Fundamentally, alterations to the nuclear composition of the germline in response to environmental factors, ageing, diet and toxicant exposure have the potential to become hereditably transmitted. WIDER IMPLICATIONS: The environment influences the health and well-being of progeny by working through the germline to introduce spontaneous genetic mutations as well as a variety of epigenetic changes, including alterations in DNA methylation status and the post-translational modification of histones. In evolutionary terms, these changes create the phenotypic diversity that fuels the fires of natural selection. However, rather than being adaptive, such variation may also generate a plethora of pathological disease states ranging from dominant genetic disorders to neurological conditions, including spontaneous schizophrenia and autism.


Assuntos
Metilação de DNA/genética , Epigênese Genética/genética , Genoma/genética , Código das Histonas/genética , Mamíferos/genética , Animais , Evolução Biológica , Células Germinativas/citologia , Hereditariedade/genética , Histonas/metabolismo , Humanos , Mutação , Pais , Fenótipo
17.
PLoS One ; 13(3): e0195003, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579126

RESUMO

Current approaches for DNA extraction and fragmentation from mammalian spermatozoa provide several challenges for the investigation of the oxidative stress burden carried in the genome of male gametes. Indeed, the potential introduction of oxidative DNA damage induced by reactive oxygen species, reducing agents (dithiothreitol or beta-mercaptoethanol), and DNA shearing techniques used in the preparation of samples for chromatin immunoprecipitation and next-generation sequencing serve to cofound the reliability and accuracy of the results obtained. Here we report optimised methodology that minimises, or completely eliminates, exposure to DNA damaging compounds during extraction and fragmentation procedures. Specifically, we show that Micrococcal nuclease (MNase) digestion prior to cellular lysis generates a greater DNA yield with minimal collateral oxidation while randomly fragmenting the entire paternal genome. This modified methodology represents a significant improvement over traditional fragmentation achieved via sonication in the preparation of genomic DNA from human spermatozoa for downstream applications, such as next-generation sequencing. We also present a redesigned bioinformatic pipeline framework adjusted to correctly analyse this form of data and detect statistically relevant targets of oxidation.


Assuntos
Dano ao DNA , DNA/isolamento & purificação , Extração Líquido-Líquido/métodos , Espermatozoides/metabolismo , Adulto , DNA/metabolismo , Dano ao DNA/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Ditiotreitol/química , Ditiotreitol/farmacologia , Genoma Humano , Humanos , Imunoprecipitação , Masculino , Mercaptoetanol/química , Mercaptoetanol/farmacologia , Nuclease do Micrococo/metabolismo , Pessoa de Meia-Idade , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/farmacologia , Resistência ao Cisalhamento , Sonicação , Adulto Jovem
18.
Biol Reprod ; 96(4): 921-935, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28379345

RESUMO

Acrylamide is a ubiquitous toxicant in human lives, due to its formation in many food products. Acrylamide induces dominant lethal mutations with administration of 25 mg/kg bw/day for 5 days in male mice. Cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1) is responsible for this dominant lethality. CYP2E1 is the only enzyme responsible for the conversion of acrylamide to the highly reactive metabolite glycidamide, which forms adducts with DNA. CYP2E1 is present predominantly in the liver, as well as the brain, kidney, intestines, and spleen. Within the male mouse reproductive tract, CYP2E1 localizes to spermatocytes. However, embryo resorptions have been demonstrated to occur only with exposure of the late stages of spermatogenesis and spermatozoa. It was determined that CYP2E1 is additionally expressed within the mouse epididymal epithelium, and this localization is responsible for acrylamide-induced dominant lethality. Further, an equivalent profile of CYP2E1 expression was identified in the human reproductive tract. While spermatozoa of both species were also established to possess CYP2E1, this did not contribute to acrylamide-induced DNA damage. In vitro studies strengthened these findings further, revealing that acrylamide exposure only induces DNA damage in human and mouse spermatozoa following metabolism by the mouse epididymal epithelial cell line (mECap18) to glycidamide. These findings emphasize, for the first time, the vital role of the epididymis in the reproductive toxicity associated with acute acrylamide exposure.


Assuntos
Acrilamida/toxicidade , Citocromo P-450 CYP2E1/metabolismo , Perda do Embrião , Epididimo/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Animais , Citocromo P-450 CYP2E1/genética , Dano ao DNA/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos
19.
Biol Reprod ; 95(4): 86, 2016 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-27580987

RESUMO

Acute acrylamide exposure in male rodents results in reduced reproductive performance and dominant lethality. However, the reproductive effects of low dose chronic exposure, which better reflects the nature of human exposure, remain far less certain. Human dietary consumption of acrylamide has been estimated at an average of 1-4 µg/kg bw/day. In order to simulate this exposure, male mice were provided with acrylamide (1 µg/ml) via their drinking water continuously for six months, which was equivalent to a human dose of 10.5 µg/ kg bw/day. This exposure regime increased DNA damage in the spermatozoa, without affecting a concomitant reduction in overall fertility. The offspring of acrylamide treated mice did not have an increased incidence of skin papilloma formation following the two-stage tumor induction protocol. However, the male offspring of acrylamide treated fathers had significantly increased levels of DNA damage in their spermatozoa, despite having had no direct toxicant exposure. It was also found that the F0, and most crucially, F1 mice had increased levels of CYP2E1 protein in their germ cells. This is significant as CYP2E1 is the sole enzyme responsible for conversion of acrylamide to its harmful metabolite glycidamide. This altered expression may be due to epigenetic alterations. Additionally, the F0 and F1 mice had increased oxidative adducts in the DNA of their germ cells, which was hypothesized to arise as a byproduct of increased CYP2E1 activity. Therefore, chronic paternal acrylamide exposure in mice has consequences for their offspring, and raises concerns for the effects of acrylamide exposure in the human population and the accumulated effects with multiple generations of exposure.

20.
Reprod Toxicol ; 63: 1-12, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27174446

RESUMO

Humans are chronically exposed to acrylamide since carbohydrate rich foods contain the toxicant as a result of cooking at high temperatures. While acrylamide is unreactive with DNA, it is readily oxidised to glycidamide, which adducts with DNA. This metabolism occurs via the enzyme, cytochrome P450, family 2, subfamily E, polypeptide 1 (CYP2E1). Acrylamide was administered to male CD1 mice for three or six months at a dose of 0.18mg/kg bodyweight/day. DNA damage was detected in germ cells and mature spermatozoa of exposed mice without compromising their overall fertility. The use of resveratrol, an antioxidant and known CYP2E1 inhibitor, was found to ameliorate the DNA damage in both germ cells and spermatozoa. However, extended resveratrol treatment (six months, 10.0mg/kg bw/week) resulted in premature activation of these cells. Thus the DNA damage found in spermatozoa after chronic acrylamide administration can be alleviated but an alternative CYP2E1 inhibitor may be required.


Assuntos
Acrilamida/toxicidade , Antioxidantes/farmacologia , Inibidores do Citocromo P-450 CYP2E1/farmacologia , Dano ao DNA/efeitos dos fármacos , Espermatozoides/efeitos dos fármacos , Estilbenos/farmacologia , Animais , Apoptose , Ensaio Cometa , Citocromo P-450 CYP2E1/metabolismo , Masculino , Camundongos , Resveratrol , Espermatozoides/metabolismo , Testículo/anatomia & histologia , Testículo/efeitos dos fármacos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA